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Properties of Regge trajectories
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Early Chew-Frautschi plots show that meson and baryon Regge trajectories are approximately linear and
non-intersecting. In this paper, we reconstruct all Regge trajectories from the most recent data. Our plots show
that meson trajectories are non-linear and intersecting. We also show that all current meson Regge trajectories
models are ruled out by data.

PACS numbeps): 11.55.Jy, 12.40.Nn, 14.20c, 14.40-—n

[. INTRODUCTION momenta. He interpreted the simple polesagfk?) on the
complexl-plane to be either resonances or bound states.
The topic of Regge trajectories was an active area of re- Chew and Frautschi7] applied the Regge poles theory to
search in the 1960s. But there is a resurgence of interest investigate the analyticity of,(k?) in the case of strong
Regge trajectories because of the quantity of new data thateractions. They postulated that all strongly interacting par-
need analysis and the new quark models need more compleieles are self-generatinghe bootstrap hypothesisnd that
experimental fits for testing. Despite this recent interestthey must lie on Regge trajectori@Shew-Frautschi conjec-
some authorgl, 2] are still using old data to construct Chew- ture) [8].
Frautschi plots. In this paper, we reconstruct all Regge tra- At first, linearity was just a convenient guide in construct-
jectories with the most recent data and elucidate the prining the Chew-Frautschi plots because data were scarce and
ciples of their construction. At the end, we explain why all there were fewa priori rules to direct the mesons and bary-
current meson Regge trajectories models are ruled out bgns into the same trajectorig8]. Once linearity was found
data. to be a good working hypothesis, justification was given
through certain assumptions in the Regge poles theory as
A. Theoretical developments follows: For Rel = —1/2, the partial-wave components of the

) . ) ] scattering amplitudé have only simple poles and are func-
This paper is concerned with the properties of Regge traggns of K2,

jectories which are graphs of the total quantum number

versus mass squardd® over a set of particles of fixed prin- B(k?)

cipal quantum numbeN, isospin|, dimensionality of the ay(k?)=——-, (4)

symmetry groupD, spin-parity and flavor. Variations id |=a(k)

andL (J=L+YS) are equivalent whe& s fixed. . . ) N
Scattering processes are usually analyzed by the methodhere 8 is the residugRegge residueand o the position

of partial waveg3,4]. The wave function in the far zone has (Regge trajectonyof the simple poles. We can use Watson

the form transformation to rewrite Eq2] as the Sommerfeld-Watson

giker formula[10] to include the poles.
) A Regge trajectong = a(k?) is also sometimes expressed
asJ=«a(E), or more commonly in terms of the Mandelstam
) variablet asJ=«a(t). t is the center-of-mass energy of the
where 6 is the angle between the wave vectorand the quark-antiquark pair defined as=(p,+ pa)2_ It is used in-

position vector . In the case of bound states, the plane wavestead ofs or u because Regge poles generally arise in this
term is absent. The form factbrs written as a sum of partial channel. For the purpose of plotting, we ude a(M?).

waves as a(t) represents a set of leading Regge poles on the complex
o I-plane and is called the Reggeon. The conditigft) <0
f(k?,cosf) = 2 (21+1)a,(k?)P,(cos#), 2) does not correspond to any physical particles becausa-
=0 not be negativ¢l1].
11 Many authorg9,12,13 are careful to disclaim linearity as
a(k?) = _J f(k% cosf)P,(cosf)dcos, (3)  being only approximate. For others, linearity is simply stated
2)-1 [14,15. By and large, it is believed that Regge trajectories
for relativistic scattering are straight lines over a consider-
wherel is the orbital angular momentum quantum numberable range of energy without any sign of deviat[d6—18§.
andP, is the Legendre polynomial of orderin 1959, Regge Attempts have been made to validate this belief on compu-
[5,6] generalized the solution dfby complexifying angular tational grounds. Kahana, Maung and Norb{it®] calcu-
lated the numerical solutions of the relativistic Thompson
equation which vyield linear, non-intersecting and parallel
*Email address: atang@uwm.edu Regge trajectories. Their calculation did not include the ef-
"Email address: norbury@uwm.edu fects of spin which can be a factor in predicting the shape of

p(r)=e'*"+f(k,cosh) —

0556-2821/2000/62)/0160069)/$15.00 62 016006-1 ©2000 The American Physical Society



ALFRED TANG AND JOHN W. NORBURY PHYSICAL REVIEW D62 016006

TABLE |. Comparisons of the predictions made by NRSE and B. Construction of Regge trajectories
the relativistic Thompson equation according to Kahana €t14l.
“Yes” refers to a property predicted by the theory and “No” is the
prediction of the opposite property.

The starting point for constructing a meson Regge trajec-
tory is the meson assignment table in PDable 13.2 on p.
110 of Ref.[25]). We fix | and flavor by selecting particles
Non-relativistic Relativistic from a single column. From this column, we isolate different

Schralinger equation ~ Thompson equation  trajectories by fixingN and spin-parity when we select par-
ticles with consecutive values df For example, the 45,

Linearity No Yes 1'P, and 1D, states constitute aN=1 singlet trajectory;
Divergence No Yes 13P, and D, the N=1 first triplet; 1°P; and D, the
Parallelism Yes Yes N=1 second triplet; iS;, 13P,, 1°Ds, and £F, the N

=1 third triplet; 22S, and 2P, theN=2 third triplet and so

the Regge trajectories. But earlier in 1985, Godfrey and IsguP"- W€ use the experimental error instead of the width to
[20] solved a relativized Schdinger equation which did in- Measure the accuracy of the mass of a meson. The width
clude the spin-spin and spin-orbit interactions. Their calcu/n€asures the imaginary part of the complex energy while the
lation concurred with the results of linear Regge trajectorie€Xperimental error indicates the accuracy of the measure-
obtained from spinless particles. These two works togethefent of the mass at the resonance peak. In case the mass of
seem to suggest that the effect of spin on the shape of tHeoth the neutral and charged mesons are reported, the mass is
Regge trajectories is negligible. On the other hand, if thdaken to be the average of the three. For example, the mass of
coupling constants are not negligible, one expects the spire(138) is taken to be the average mass¥{(135) and
orbit contributions to be significant for highvalues. Salvo 7~ (140). Similarly the error of mass is also taken to be the
[1] et al. published solutions for non-linear Regge trajecto-average of the errors of the two corresponding masses. This
ries by including spin dependent terms in a 3-dimension rescheme does not pose any serious ambiguity because the
duction of the Bethe-Salpeter equation. Salvo’s conclusiorinasses and the errors of the neutral and charged mesons are
differs from those of Kahana and Godfrey concerning theusually quite closdthe difference in mass is usualiy 1%
effect of spin on Regge trajectories. and is~3.5% in the worst cageand hence do not change
The linearity of Regge trajectories has been the object obur conclusions. The error of mass squai®)?, is calcu-
investigation once again recently. On the theoretical frontlated from the masdv and its errordM by the relation
Tang[21] used perturbative QCD to show that Regge trajec-dM?=2MdM. The end results are 13 trajectories containing
tories are non-linear by studying high-energy elastic scatter2 particles each, 4 containing 3 particles each and 4 contain-
ing with mesonic exchange in the case of both fixed andng 4 particles each. Single particle trajectories are omitted
running coupling constants. On the experimental side, Brandtom the plots. None of th&l=1 second triplet trajectories
[22] et al. affirmed the existence of non-linear Pomeron tra-are plotted because most of them are single particle trajecto-
jectories from the data analysis of the recent UA8 and Interfies except the one containitig g andK,(1820), whereK ;5
secting Storage RingdSR) experiments at CERN. They is a nearly equal (45°) mixture ¢€,(1270) andK;(1400).
published a parametrization of Pomeron trajectories containSince some of these trajectories contained unconfirmed me-
ing a quadratic term, sons, not all of them are used in this paper.
a(t)=1.10+0.25 + a"t?, (5) The boldface entries in the assignment table refer to the
mesons which are confirmed by experiments. The regular
where o” is a constant. Recently, Burakovsk®3,24 pre- typeface entries correspond to those which are omitted from
sented a phenomenological string model for logarithmic andhe summary table because of work in progress. For ex-
square root Regge trajectories. ample, one of the regular typeface entries in the assignment
In this paper, we check the claims of non-linear Reggetable, f4(2220), is listed ag;(2220) in the summary table
trajectories by plotting the most recent experimental datdecausel may assume a value of either 2 or 4 depending on
published in the 1998 Particle Data Gro(RDG) book[25].  the final confirmation by experiments. There are other simi-
Our plots confirm the existence of non-linear trajectorieslar undetermined quantities in the meson data. This paper
Early Chew-Frautschi plots also show that Regge trajectorietakes the conservative approach by using only the bold face
fan out. We refer to this non-intersecting property as “diver-(confirmed data contained in the PDG meson assignment
gence.” We also show that many trajectories intersect. Katable.
hana et al. numerically constructed a set of hypothetical The baryon Regge trajectories are constructed from the
Regge trajectories by using a fully relativistic ThompsonPDG baryon assignment tab{@able 13.4 on p. 112 of Ref.
equation. They discovered that there are differences in thg25]). Baryons are categorized into 4 different confidence
properties of the trajectories obtained by nonrelativisticlevels according to their likelihood of existence. Confidence
Schralinger equatiodiNRSE) versus those by the Thompson level 1 is assigned to the baryons which are deemed the least
equation. We summarize the conclusions of Kahetnal. in likely to exist and level 4 the most likely to exist. The baryon
Table | to illustrate these differences. assignment table contains only the level 3 and 4 particles.
When trajectories of different principal quantum numbersThese are the baryons we will analyze in this paper.
N but all other quantum numbers fixed are plotted together, The baryon assignment table uses a set of slightly differ-
they appear parallel. We call this property “parallelism.”  ent quantum numbers, such 3§ (D,LE) andS As before,
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FIG. 1. Meson Regge trajectory of thd=1, S=0 singlet FIG. 2. Meson Regge trajectory of tité=1, S=0 singlet

states.b;(1235) fails to intersect the zone. The polynomial fit is states. The RPP assignment table listg as a nearly equal mixture
M2=—0.10770%+1.6003+0.019 (GeV). The mass ofr(138) is  of K(1270) andK(1400). In the graph above, we plot both con-
taken to be the average of the massesr®135) andw=(140). stituent mesons aj=1 for the sake of completeness. Neither
Although there is a 6.5% difference between the mass squares #f(1270), K(1400) nor their average satisfies the zone test by
w°(135) andw=(140), the test zone is virtually unchanged by this simple inspection. The polynomial fit df(495), K(1270) and
small difference because of the large mass squared of the other two(1770) isM?=0.0730%+ 1.3018 + 0.245 (Ge\?).

mesons on the trajectory. The zone test suggests that tingjec-

tory is non-linear. and odd parity mesons can be plotted along the same trajec-

tories. In the case of baryons, the cross channel forces per-
J is the total angular momentur®, the parity,L the orbital  sist. Therefore the even and odd parity baryons cannot be
angular momentum an8l the spin. The new quantum num- plotted together in the same trajectories. The EXD criteria
ber D is the dimensionality of the symmetry group and hasenable us to pick out 3 trajectories of 3 baryons each and 2
the value of either 56 or 70. These numbers come from therajectories of 2 baryons each from the baryon assignment
dimensionalities of the irreducible representations of flavortable. These selections are achieved by isolating a column
spin SU(6), i.e. 68 6@ 6=565® 70, ® 70y ® 20, where the [e.g. theN(939)-N(2220) column and picking all the par-
subscriptS stands for “symmetric,”A for “asymmetric” ticles with the sam®, SandP [e.g.N(939), N(1680) and
andM for “mixed symmetry.” N is the “band” which gives  N(2220)]. Once a trajectory is picked from the first column,
the number of excitation quanta. The construction of acorresponding entries of the following columns also consti-
baryon Regge trajectory is similar to that of the meson in thatute baryon Regge trajectories. The spectroscopic notation
all quantum numbers exceptare fixed along a trajectory. In - for baryons isL,, ,;. TheN and A trajectories are made up
other words,D, S, flavor, strangeness and isospin are con-f the P,1, Fi5, Hyg States and thd trajectory is made up
stant along a baryon Regge trajectory. Ohlys allowed to  of the Pas, Fa7, Hg g States.
vary. N changes withL in the same integer steps so that a

phange inN is the same as a change lin Hence we can Il LINEARITY
ignore the consideration d.
Regge recurrences are separated by 2 unitd. of the Linearity means that all the particles of a Regge trajectory

case of mesons, we can plot two trajectories together in somm@ust lie on the straight lin?= «J+ 8. In graphical analy-
cases because the cross channel forces between them vaniis, non-linearity can be detected by simple inspection in
It is known as the “exchange degeneracyEXD) [13]  only extreme cases. Linearity on the other hand is more dif-
which arises out of the cross channel forces which splificult to judge. Therefore we devise a method called the
a(l,k) into even(+) and odd ¢) signatures as.(I,k).  “zone test” to facilitate this judgment.

The separation of the even and odd signatures correspond to
the two different Regge trajectories. If the cross channel
forces vanish(as in the case of mesonghe even and odd
signatures coincide and the even and odd trajectories over- We test linearity by the “zone test” on Regge trajectories
lap. It meansa,=a_ and 8,.=B_. These are called the with 3 or more particles. A test zone of an experimental
EXD conditions. When the EXD conditions apply, the evenRegge trajectory is defined to be the area bounded by the

A. Zone test
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FIG. 3. Meson Regge trajectory of tiu=1, S=1 third triplet FIG. 5. Meson Regge trajectory of tiN=1, S=1 third triplet

states. Botha,(1320) andp3(1690) intersect the zone and hence states.f,(1525) fails to intersect the zone. The polynomial fit is
this trajectory passes the zone test. Linearity is supported by the2=—0.08792+ 1.5509 — 0.4234 (GeV).

numerical zone test. The polynomial fit i$%=0.0191?
+1.0629—0.4831 (GeV). The negative vertical intercept corre-
sponds to a non-sense pole becadisel is not allowed in arS
=1 state.

line if the error bars of all other particles intersect the zone.
In most cases, intersections are easily discernible by inspec-
tion. If ambiguity ever arises in borderline cases, an exact
error bars of the first and the last particles and the straighfumerical version of the zone test is used. _
lines joining them. Figures 16 illustrate these test zones SUPPOSE we are given a sequen<:zeNdhezsons and their
(regions enclosed by the dotted line# zone contains all values of mass square with errofd/ =dM;}. We calcu-

the possible straight lines crossing the error bars of the firdgte the equation of the straight line connectid +dM7

and the last particles. A Regge trajectory can be a straigfind M+ dM§ and then the equation of the line connecting
M2—dM? and MZ—dMZ3. These two lines define the

5 - \ , \ boundaries of the zone. For eadhwe can calculate the
bounds to be intersected by the error bar to qualify as a linear
45 ] Regge trajectory. For a 3-particle trajectory in which the par-
f.(2050) ticles are labeled (1,2,3), the lower and upper bound$ at
41 ] =2 are calculated as
I ] (M{=dMD)+(Mj—dM))
3.5 —
B b(3,2= > ,
N% 3+ 7 (6)
3 (M2+dM?) + (M2+dM2)
(50 2.5 - B Ub(3,2)= 1 1 3 3 ,
3 2
g 2| |
=
1.5 - . wherelb(3,2) stands for the lower bound awd(3,2) the
upper bound of particle 2 along a 3-particle trajectory. Simi-
1+ . larly, we can calculate the bounds of particles 2 and 3 along
o(782) a 4-particle trajectory as
0.5 i
2(M3—dM?)+(M5—dM3)
% ; ; 5 5 Ib(4,9= ———————

J 3 ,
: o 7

FIG. 4. Meson Regge trajectory of tiN=1, S=1 third triplet
states. Bothf,(1270) andw3(1670) fail to intersect the zone. The ub(4,2) =

polynomial fit isM?=0.0962?+0.7042 — 0.1837 (GeV).

2(M3+dM?%)+(M3+dM3)
3 t
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FIG. 6. Meson Regge trajectory of tiN=1, S=1 third triplet FIG. 8. Baryon Regge trajectory &=1/2, P=+ and =0
states. B_oth(_§_(1430) andK3 (1780) fail to intersect the zone. The octet states.A(1820) has a numerical bound ofb(ub)(3,2)
polynomial fit isM?= —0.0535%+1.3922—0.5331 (GeV). =(3.360,3.431) Ge¥ which does not intersect the experimental

bound of (3.294,3.331) G&V A(1820) fails the numerical zone
(M2—dM3)+2(M3—dM3) test. The polynomial fit is M?=0.0180%+0.9790+0.7524
Ib(4,3 = 3 , (GeV).
(M2+dM2)+2(M2+ dM2) ®
ub(4,3 = .
3
We can generalize these results for particlalong an
n-particle trajectory as
7 v T T
] T T T T T T T T T
6 i
5 i
5T A(2420)
4 b i —
% 4
= A
3 g
ry =2
3% ] FERS A(1950) |
(2] (]
2 N(1680) =
=
2 r g 2 r 7
4 L A(1232) |
1F - 8
N(939)
0 1 Cli ..".'> % é 1‘1 13
0 0 1 2 3 4 5 6 7 8 9 10 J(172)

J(1/2)
FIG. 9. Baryon Regge trajectory &=3/2, P=+ and|=3/2

FIG. 7. Baryon Regge trajectory &=1/2, P=+ and|=1/2 decuplet states\ (1950) satisfies the zone test due to the large error
octet statesN(1680) satisfies the zone test by simple inspection.of A(2420). The polynomial fit isM?=—0.029%+1.287%
The polynomial fit isM2=0.0207%+0.90811+ 0.4223(GeV). —0.3480(GeV).
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FIG. 10. Meson Regge trajectories of the=1, S=0 singlet FIG. 11. Meson Regge trajectories of tNe=1, S=1 first trip-

states. The series consists of ths3, 1'P; and 1'D, states. The |et states. The series consists of th#Pg and D, states. The

trajectories include those illustrated in Figs. 1 and 2 as well aBthe trajectories labeled 1-3 are magnified in Fig. 12. Global divergence
mesons. Thé andDs mesons form a group and theand light s opserved in this graph.

unflavored mesong; and = form another. Global divergence is

observed among groups of trajectories of large mass difference bylyne at the lower boundary. In this case, the numerical ver-

local divergence is violated when thetrajectory(denoted by the  gjg of the zone test is used. The error bars of both particles

dotted ling intersects th& and = trajectories. must intersect the bounds to support linearity. The bounds in
the case ofa,(1320) are [b,ub)(4,2)=(1.73,1.78) Ge¥

o (N=i)(MI=dM)+ (i —1)(M{—dMJ) which intersect the error baf1.7358, 1.7390Ge\2. The
Ib(N,i)= N—1 ' bounds for p3(1690) are (b,ub)(4,3)=(2.87,2.96) Ge¥
(9)  which also intersect the error ba®.843, 2.876GeV?. The

. 2 N 2 5 numerical test supports the existence of a straight line inter-

Ub(NLi) = (N=i)(M{+dM7)+ (i —1)(M{+dMy) secting all the error bars of the particles along this trajectory.

N—1 ' The o trajectory has an increasing slope while both the
andK* trajectories have decreasing slopes.
This numerical method is useful for checking linearity when The zone test for baryon trajectories are illustrated in

simple inspection is inconclusive. Figs. 7-9. TheN and A trajectories in Figs. 7 and 9 clearly
satisfy the zone test by simple inspection. Thérajectory in
B. Conclusions from zone test Fig. 8 is shown to be non-linear by the numerical zone test.

In summary, 6 of 8 trajectories with 3 or more particles each

All of the data points in all of the graphs in this paper aré 3re shown to be non-linear. Polynominal fits of the trajecto-
shown with error bars. If the error bars are invisible in theries are included in the figure captions for reference only.

plots, it simply means that the error bars are smaller than the
symbols of the associated data points. We use the zone test
to check linearity by simple inspection in Figs. 1-6. At least
one of the error bars of the intermediate particles fails to Divergence seems to be a property of the Regge trajecto-
intersect the test zone in all of the figures except Fig. 3.  ries in the early Chew-Frautschi plots and is also a prediction
Figures 1 and 2 illustrate a group of meson Regge trajecef the numerical calculations by Kahae#al. [19]. Diver-
tories of theN=1, S=0 singlet states and varyinhcorre-  gence is defined to be the conjunction of two properti&s:
sponding to the 1Sy, 1'P; and 1'D, states. Both trajecto- non-intersection an¢?) fanning out.
ries fail the zone test and are non-linear. Th&rajectory has We check divergence by plotting families of meson
a decreasing slope. Regge trajectories with the same isospin and spin-parity in
In Figs. 3—-6, trajectories of the=1, S=1 third triplet  Figs. 10-15. It is observed that non-linear trajectories of
states with varyingd corresponding to the *B,, 1°P,, similar masses intertwine. In general, Regge trajectories are
1%D,, and PF, states are plotted. Trajectories in Figs. 4 andnot evenly saparated in a graph. Some trajectories can be
6 fail the zone test by simple inspection. In Fig. 3, the errorobscured when many of them are plotted over a large mass
bars of botha,(1320) andp;(1690) appear to intersect the range on the same graph. We adopt a numeration scheme

Ill. DIVERGENCE
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FIG. 14. Meson Regge trajectories of the=1, S=1 third
triplet states. The series consists of this], 13P,, 1°Dj, and

trajectories 1-3 are the magnifications of a subset of Fig. 11. Trai3F , states. The trajectories 4—7 are magnifications of a subset of
jectories 1 and 2 are shifted horizontally slightly to separate thehe trajectories in Fig. 13 and are the same trajectories as in Figs.
error bars. Divergence is inconclusive because of the large erros_g. Divergence is violated by these trajectories.

bars. The actual mass Kf* (1680) is 1717 MeV which causes it to

appear higher thap(1700) in the graph.
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the large error bars in Fig. 12, the determination of the prop-

which allows us to identify the obscured trajectories in sepa&rties of these meson trajectories is inconclusive. _
rate plots. For example, the group denoted as 1-3 in Fig. 11 Although |r_1d|V|_duaI meson trajectories do not fan out, it
is magnified as trajectories 1-3 in Fig. 12. Divergence i£@n be seen in Figs. 10, 11, 13, and 15 that groups of them

clearly violated in Fig. 14 when trajectories intersect. Due todiverge on a global level. We also notice that these groups
can be labeled according to mass difference. In general, the
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FIG. 13. Meson Regge trajectories of the=1, S=1 third
triplet states. The series consists of th&s]l, 1°P,, 1°D,, and
1%F, states. The group of trajectories labeled 4—7 are magnified itriplet states. The series consists of titS2and 2P, states. Di-
vergence is observed.

Fig. 14. Global divergence is observed.
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FIG. 16. Baryon Regge trajectoriesBf + octet states. Due to FIG. 18. Meson Regge trajectories of the=1,2, S=1 third
the scarcity of data and the large errorN§2220), divergence is triplet states. The series consists of tH&{, 13P,, 23S, and 2P,
plausible but inconclusive. states. TheN=1 states are denoted by solid lines ad 2 states
by long-dashed lines. Parallelism is inconclusive due to the large

mass of the intersecting trajectories does not differ signifi"™or bar off(2010).

cantly. On the other hand, divergent trajectories have large. i
mass difference. For example, in Fig. 10, the K and 7 difference fan out in our plots. In the case of baryon Regge

trajectories have small mass difference and form a group Otf'ajectorie_s, there are insufficient da}ta to test divergence. Di-
intersecting trajectories. THe andDs trajectories also form  Vergence is shown to be plausible in Figs. 16 and 17.

a group with small mass difference. These two groups of

trajectories diverge globally. In summary, trajectories of

small mass difference do not diverge but those of large mass IV. PARALLELISM

Parallelism refers to the property that Regge trajectories
of different values ofN (which are otherwise identicahre
parallel. Two trajectories are parallel if the dynamics are
- similar. There is noa priori reason why parallelism must
hold. There are only twap trajectories withN=1 andN
=2 which qualify for this test. Figure 18 shows that the two
AQ2420) ] trajectories appear to be parallel. However these trajectories
consist of only 2 or 3 mesons each. It is not clear how they
will behave atJ>2. The error off ,(2010) is also quite large
compared to the separation of the two trajectories. In conclu-
sion, the status of parallelism as a candidate for a property of
i Regge trajectories is still uncertain.

=(2030)

IN
T

A(1950)

Mass Square { GeV*)
w

=(1385)
V. CONCLUSION

A1232) | ~The linearity of Regge trajectories is clearly violated in
T Figs. 1, 2, 4, and 6 by simple inspection but is supported by
the numerical zone test in Fig. 3. Divergence is not observed
, on an individual basis. On the other hand, divergence of
1 3 s Y 8 " groups of trajectories of small mass difference is observed on

J(1/2) . L. . .
a global level. Due to insufficient data, parallelism is incon-
FIG. 17. Baryon Regge trajectories Bf= + decuplet states. Clusive. _ o

Due to the scarcity of data and the large errorAgR420), diver- Currently there are a variety of models predicting both
gence is plausible but inconclusive. linear and non-linear Regge trajectories. In general, almost

o
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all theorieq1,2,24,26,27,29,30agree that meson Regge tra- trajectories models because they are faced with at least one
jectories are linear in the smalllimit. Our plots contradict of the problems mentioned above.

these predictions. Secondly, all non-linear Regge trajectories
models predict trajectories with either increasing or decreas-
ing slopes exclusively, but not botfl,24,28. Our plots
show that meson Regge trajectories of both kinds exist. We thank Dr. Sudha Swaminathan and Professor Dale
Therefore data rule out all the models that predict non-lineaBnider for their comments. This work was supported in part
meson Regge trajectories with strictly increasing or decready NASA Research Grant Numbers NCC-1-354 and NCC-
ing slopes. In the end, data rule out all current meson Reggé-260.
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